General Bounds and Finite-Time Improvement for the Kiefer-Wolfowitz Stochastic Approximation Algorithm
نویسندگان
چکیده
We consider the Kiefer-Wolfowitz (KW) stochastic approximation algorithm and derive general upper bounds on its meansquared error. The bounds are established using an elementary induction argument and phrased directly in the terms of tuning sequences of the algorithm. From this we deduce the nonnecessity of one of the main assumptions imposed on the tuning sequences by Kiefer and Wolfowitz [Kiefer, J., J. Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. Ann. Math. Statist. 23(3) 462–466] and essentially all subsequent literature. The optimal choice of sequences is derived for various cases of interest, and an adaptive version of the KW algorithm, scaled-and-shifted KW (or SSKW), is proposed with the aim of improving its finite-time behavior. The key idea is to dynamically scale and shift the tuning sequences to better match them with characteristics of the unknown function and noise level, and thus improve algorithm performance. Numerical results are provided that illustrate that the proposed algorithm retains the convergence properties of the original KW algorithm while dramatically improving its performance in some cases.
منابع مشابه
A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm
A stochastic algorithm for the recursive approximation of the location θ of a maximum of a regression function has been introduced by Kiefer and Wolfowitz (1952) in the univariate framework, and by Blum (1954) in the multivariate case. The aim of this paper is to provide a companion algorithm to the Kiefer-Wolfowitz-Blum algorithm, which allows to simultaneously recursively approximate the size...
متن کاملAccelerated randomized stochastic optimization1
We propose a general class of randomized gradient estimates to be employed in the recursive search of the minimum of an unknown multivariate regression function. Here only two observations per iteration step are used. As special cases it includes random direction stochastic approximation (Kushner and Clark), simultaneous perturbation stochastic approximation (Spall) and a special kernel based s...
متن کاملAn extension of Driml-Nedoma continuous stochastic approximation procedure
as a continuous analogy of Robbins-Monro stochastic approximation procedure [5]. They have proved that under certain general conditions on r(x) and C(f), the solution of (1.1) converges with probability one to the unique root of the regression function r(x). In this paper, we shall be concerned with the extension of this procedure to the case where the regression function r(x) has several (fini...
متن کاملAsymptotically Valid Single-Stage Multiple-Comparison Procedures
We establish general conditions for the asymptotic validity of single-stage multiple-comparison procedures (MCPs) under the following general framework. There is a finite number of independent alternatives to compare, where each alternative can represent, e.g., a population, treatment, system or stochastic process. Associated with each alternative is an unknown parameter to be estimated, and th...
متن کاملA Deterministic Analysis of Stochastic Approximation with Randomized Directions
We study the convergence of two stochastic approximation algorithms with randomized directions: the simultaneous perturbation stochastic approximation algorithm and the random direction Kiefer–Wolfowitz algorithm. We establish deterministic necessary and sufficient conditions on the random directions and noise sequences for both algorithms, and these conditions demonstrate the effect of the “ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 59 شماره
صفحات -
تاریخ انتشار 2011